
2640 AIAA JOURNAL VOL. 1, NO. 11

which can be written as
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Fig. 1 Vector diagram.

in Fig. 1, the angular momentums about the longitudinal
and transverse axes prior to separation are

ML =

+

The coning angle is defined as

MT IT, + IT, W,

(1)
(2)

(3)

Immediately after separation and assuming a perfect separa-
tion mechanism, the components of angular momentum of
mi about its own center of mass are

ML, = IL^h (4)

But con = 0)1 and co*i = ut, since in the process of separation
no external torques were introduced. The coning angle for
mi is

In a similar manner,

tan02 =

(6)

(7)

(8)
(9)

Angular momentum of the system is conserved by the motion
of mi and m2 about the system center of mass. The coning
angle of the payload after separation is increased or decreased
over that of the configuration before separation according to
the relationship

(10)
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Similar relationships are true for the booster coning angle.

It is, therefore, possible for the coning angle of the payload
to increase or decrease even with a perfect separation mech-
anism.
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Nomenclature

attenuation coefficient
aT*
mass ablation rate per unit area
ablation parameter
flake reflectivity
absolute temperature
Stefan-Boltzmann constant

Subscript
A = ablation

THE noses of superorbital re-entry vehicles will receive
significant radiant heating pulses during deceleration to

orbital speeds. Designers of such vehicles must prevent this
energy from penetrating to the load-bearing structures. This
may be done by using opaque heat shields, charring ablators,
or ablators that have opaque vapor states. Discussing
transparent, noncharring ablators with transparent vapor
states, Alien1 suggests another way to prevent radiation
penetration: add metal flakes to the heat shield, orienting
these flakes to reflect gas cap radiation away from the vehicle.

This note develops the ablation rate expression for a trans-
parent ablator and simplifies the expression for two condi-
tions: negligible radiant heating and substantial radiant
heating. The transparent ablator is compared to an opaque
ablator on the basis of minimum ablation rate for the two
radiant heating conditions.

Assuming that the first metal flakes in the transparent
ablator are located parallel to the shield surface at a depth
L and that thermal conduction is negligible in the surface
layer of depth L (L layer), the power balance for an elemental
area of the L layer and the flake may be written as

+ qRi = qA + q€ +. (1)

where qci is convective heat flux in, qRi is flux in due to gas
cap radiation, qA is flux carried away by vaporized ablator,
q€ is thermal emission from the L layer and the flake, and
qRO is unabsorbed gas cap radiation leaving the area element
after reflection from the flake.

The net heating into the skin element is

— qa + (2)

where qNR = qRi — ##o is the net radiant energy absorbed by
the L layer and the flake. Now,

qA = q*m (3)

It,
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Fig. 1 Transparent
ablator properties.
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Solving Eqs. (2) and (3) for ra,

m = (l/q*){qci + qNR — q*} (4)

The variation of m with x(= aL), the attenuation factor of the
L layer, is

do;
_ ctye)

dx j

To evaluate m and dm/c)£, <?e and #^ must be obtained as
functions of x.

Assuming that attenuation coefficient and temperature are
constant in the L layer and that the area element is two-
dimensional,

q€ = \x EA exp(— x) + \rx EA exp(— 2x) +
(1 - r)EA exp(-z) (6)

The first right-hand term is power radiated directly to the
external surface from the volume of the L layer. The second
term is volume-radiated power that reaches the L layer-flake
interface and is then reflected from the flake to the external
surface. The exp(— x) in the first term and one exp(— x)
factor of exp(— 2x) in the second term approximate the
attenuation of isotropic bulk radiation from an infinite slab
before it reaches one slab face. This model was chosen by
inspecting the more exact model formed by inserting the ab-
sorption factor exp(— ar) in the integral given by Yoshikawa
and Wick2 for an analogous situation (r means radial dis-
tance here).

The second exp(— x) factor in the second term and the
exp(— x) in the third term represent the attenuation of a
beam of radiation passing through a slab from surface to sur-
face (Lambert's law). In the second term, the impinging
beam intensity is %rxEA exp(— x), the bulk radiation reflected
from the flake. In the third term, the impinging beam in-
tensity is (1 — r)EA, the radiant flux emitted by the flake.
The two exp(— x) factors used next in Eq. (7) are beam
attenuation terms.

The gas cap radiation entering the area element is reduced
by exp(— x) when it reaches the flake, r of the remaining
power is reflected, and exp(— x) of the reflected power reaches
the shield surface again. This gives

quo = qRi r exp(—2#) •

Inserting Eqs. (6) and (7) in Eqs. (4) and (5),

m = (!/<?*) [qd + (1 — re~*x)qm —

(7)

{(x/2) + (rx/2)e-» + (1 - r)} e-EA] (8)

{2r + re~*(l - 2x) - (1 + x)}(e~*/2)EA] (9)
Three general statements on the properties of semitrans-

parent materials backed by reflectors may be deduced from
Eqs. (8) and (9):

1) Absorptivity, {1 — r exp(—2x)} , is not equivalent to
emissivity, [{x/2 + (rx/2) exp(—x) + (1 — r)} exp (—x ) ] ,
although it may be numerically equal for special values of x
andr.

2) There is an x value for each r for which emissivity is a ,
maximum (xopi). This is also the x value for which m is a
minimum when qRi/EA ~ 0 (mathematically, qRi = 0).
Figure 1 shows xOPt vs r.

3) For increasing qRi/EA, the x value for minimum m de-
creases. Figure 1 shows qRi/EA vs r for which this £min reaches
zero. Note that zmin and xopt are not the same for qRi/EA ^
0, since xmin depends on both absorptivity and emissivity,
whereas #OPt depends only on emissivity. For values of
qRi/EA greater than those shown in Fig. 1, the x value for
minimum m is always equal to zero.

Will qRi/EA values greater than those in Fig. 1 occur in
flight situations of interest? Consider a point on a lifting
superorbital re-entry trajectory: 35 kft/sec, 200 kft. Let
the nose radius be 1 ft, and let TA be 2460°R. For these
conditions, qRi = 50 Btu/ft2-sec,3 and EA = 36.5 Btu/ft2-
sec.4 qRi/EA > 1.37 here, since the preceding qRi is for an
equilibrium shock layer and is thus a lower limit.

For x ~ 0 with qRi/EA > 0,

m « (l/q*){qe< + (1 - r)qBi - (1 - r)EA} (10)

and for qm/EA « 0, with x = xopi)

™ « ( l / f f*){ f fc<- CoptE*} (11)

where eopt is the e corresponding to #opt; eopt is displayed in
Fig. 1. Note that large r decreases m for qm/EA large,
whereas Fig. 1 shows that small r will decrease m for qRi/EA ~
0. Treating the reflector as an opaque material for which
emissivity and absorptivity are equivalent, reducing emis-
sivity reduces m for large qRi/EA, whereas increasing emis-
sivity reduces m for qm/EA « 0.

Next, consider an opaque ablator with variable emissivity
(therefore, noncharring). Assuming that emissivity and
absorptivity are equivalent for this ablator, the power balance
equation corresponding to Eq. (1) is

i = qA

setting q€ = eEAj

™ = (1/3*) m - eEA}

(12)

(13)
For this type of ablator, decreasing e decreases m when qRi/
EA > 1. Increasing e decreases m when qm/EA < 1.

Writing 1 — r — e i n E q . (13) and comparing that with
Eq. (10), it is seen that m is the same for the transparent
ablator with flakes and the opaque ablator when r is the same.
For qRi/EA « 0, a comparison of Eqs. (11) and (13) shows
that rii may be made less for the opaque ablator than for the
transparent ablator, since emissivities greater than eopt may
easily be achieved for opaque ablators.

Consideration of the practical difficulties in creating a
transparent ablator with small flakes embedded in it (parallel
to each other and spaced so that x is both small and rela-
tively constant as ablation progresses) suggests that opaque
ablators are more usable for qm/EA > 1, for which the semi-
transparent and opaque ablators have equal m.

This note shows that Alien's basic idea, i.e., reflecting shock-
layer radiation rather than absorbing it, is a valid technique
for reducing m at those trajectory points and those vehicle
surface areas for which qRi/EA > 1. An opaque ablating
heat shield designed according to the criterion developed
here for a superorbital re-entry craft would have the following
characteristics. An outer layer of high emissivity ablator
would receive the initial superorbital convective heating.
As qm/EA increased through one, the high emissivity layer
would be removed by ablation to present a highly reflective
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ablator surface. The highly reflective surface would receive
the radiant heating peak of the superorbital re-entry and
give way to another high-emissivity layer as qRi/EA decreased
through one.
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Introduction

SEVERAL accurate methods have been developed for
analyzing inviscid hypersonic flows around blunt bodies

(see, e.g., Refs. 1-3). In most of these methods, however,
the gas is assumed to be perfect, i.e., one that obeys the
equation of state p = p RT, where p is the pressure, p the
density, R the gas constant, and T the temperature, and has a
constant ratio of specific heats. The use of such a state
equation is well justified in that accurate results are obtained
at flight Mach numbers for which molecular vibration, dissoci-
ation, and ionization in the flow between the detached bow
shock wave and the body is nonexistent or negligibly small.
However, as the flight Mach number and hence temperature
behind the shock increases, the vibrational energy modes
become excited and the gas begins to dissociate and ionize.
Upon excitation of the vibrational energy modes, the specific-
heat ratio no longer remains constant, and, with the onset
of dissociation, the relation p = p RT becomes inaccurate.
Thus, although perfect-gas results for flight Mach numbers
above those at which real-gas effects become significant still
yield important qualitative features of the flow field, quanti-
tative accuracy of thermodynamic and physical variables
decreases.

In order to increase the accuracy of existing inviscid equilib-
rium perfect-gas blunt-body solutions at flight Mach num-
bers above those at which real-gas effects become important,
several investigators have modified perfect-gas solutions
to handle real-gas effects. The Research and Advanced
Systems Branch of the Aero and Propulsion Sciences Group
at Norair Division of the Northrop Corporation has devel-
oped an equilibrium real-gas solution4 in which the perfect-
gas equation of state is replaced by Hansen's5 closed-form
expressions for the thermodynamic properties of equilibrium
air. Van Dyke's6 method of numerical integration of partial
differential equations is used by the Northrop group. Lomax
and Inouye7 of NASA-Ames have developed a solution com-
bining the equilibrium-air data of Hilsenrath and Beckett8

with the Van Dyke Solution. f
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For real-gas solutions such as developed at Northrop and
Ames, a substantial amount of labor is required to incorporate
the real-gas equations of state into the basic solution. Han-
sen's expressions for the thermodynamic properties are
lengthy, and the NASA solution requires computing machine
storage of the Hilsenrath and Beckett tables, along with
table look-up and interpolation routines. Hence, it would
be advantageous if an approximate equilibrium real-gas
thermodynamic description could be developed that, when
used to replace perfect-gas thermodynamics in any accurate
blunt-body solution, would yield accuracy to within a few
percent of the more exact solutions at only a fraction of the
labor.

By assuming the equilibrium real-gas flow between the
shock and a blunt-nosed body to be one of constant specific-
heat ratio different from the undissociated freestream value,
an approximate equilibrium real-gas thermodynamic descrip-
tion is obtained. The author's blunt-body method9 is modi-
fied to accommodate the approximate thermodynamic
description of the actual equilibrium real-gas flow. Results
are compared with those obtained at Northrop and Ames,
and also with perfect-gas solutions.

Approximate Equilibrium Real-Gas Thermodynamics

As previously mentioned, the equilibrium real-gas flow
between the shock wave and body is assumed to be one of
constant specific-heat ratio. In addition, this gas is assumed
to obey the equation of state

h = [7/(7 — l)](p/p) + A (1)

where h is the enthalpy, p the pressure, A a constant, and 7
the adiabatic index defined by

7 = (d Inp/d lnp)s = a2p/p (2)
where s is the entropy and a the speed of sound. The as-
sumption of Eq. (1) for the equation of state in the shock
layer can be given physical justification by noting that it is
tantamount to assuming that each species in the shock layer
behaves as a perfect gas having the same ratio of specific
heats, 7. The constant A is then identifiable with the
dissociation-energy contribution to the enthalpy.

By use of the Second Law of Thermodynamics it can be
proven that, for a gas having the state equation, Eq. (1), the
entropy s is a function of p/py only. Thus, since entropy is
conserved along streamlines in equilibrium flow, introduction
of a stream function into the governing equations of fluid
mechanics yields

P/P7 = (3)

where ^ is the stream function and the functional form of g
is determined from the boundary conditions at the shock
wave. Then, modification of an accurate blunt-body solu-
tion such as that of Van Dyke1 or Swigart9 reduces to modi-
fication of the shock-wave boundary conditions and the func-
tion gty). For the real-gas description under consideration,
the density ratio across the shock wave becomes

i + 1 +
1 -

X

r/i + 2T
2

- 2(T
2 - D X

where B is a parameter characterizing the shock-wave shape,6'9
C = 1 — B, % is distance along the shock, M is the freestream
Mach number, A = A/qm

2, where g^ is the freestream speed,
and 7 a, is the specific-heat ratio in the freestream. The


